4.X matrix exponential

Back to basics: What is e^{x} ? $\quad(x \in \mathbb{R})$

$$
(2.71828 \cdots)^{x}
$$

乞 Jacob Bernoulli (1683)

$$
\begin{gathered}
e=\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m} \quad \text { (studying compound interest) } \\
(2.71828 \cdots)^{3}=(2.71828 \cdots)(2.7182 \cdots)(2.71828 \cdots) \\
\left.(2.71828 \cdots)^{3.1}=(2.71828 \cdots)^{3} \sqrt[10]{2.71828 \cdots}\right)(\sqrt[10]{10} \sqrt{2.71828 \cdots})^{4} \\
(2.71828 \cdots)^{3.14}=(2.71828 \cdots)^{3} \sqrt[10]{2.71828 \cdots}=\lim _{m \rightarrow \infty}(2.71828 \cdots)^{x}, \text { where } \lim _{m \rightarrow \infty} x_{m}=\pi \\
e^{\pi}=(2.71828 \cdots)^{3.14 \cdots}
\end{gathered}
$$

Def. 1: e^{x} is the unique solution to $\frac{d}{d x}[y(x)]=y(x), \quad y(0)=1$.
Def. 2: $\quad e^{x}=\lim _{m \rightarrow \infty}\left(1+\frac{x}{m}\right)^{m}$
Def. 3: $\quad e^{x}=\sum_{m=0}^{\infty} \frac{x^{m}}{m!}$
Note: Since $e^{x}=\sum_{m=0}^{\infty} \frac{x^{m}}{m!}$ has infrite radius of convergence, so we Can use this definition for all $e^{z}=\sum_{m=0}^{\infty} \frac{z^{m}}{m!}$, where $z \in \mathbb{C}$.

Matrix exponentis!:
Def. 3: Let $e^{A}=\sum_{m=0}^{\infty} \frac{A^{m}}{m!}$, where $A \in \mathbb{C}^{n \times n}$
Properties: (1) $e^{0}=I$, where $O \in \mathbb{C}^{n \times n}$ is 0 matrix.

Properties: (1) $e=1$, where $U \in \mathbb{C}$ is U matrix.
(2) If $A B=B A, A, B \in \mathbb{C}^{n \times n}$, then $e^{X} e^{Y}=e^{X+Y}$
(3) If $P \in \mathbb{C}^{n \times n}$ is invertible, then $e^{P B P^{1}}=P e^{B P^{-1}}$

Suppose $A=\rho \beta P^{-1}$
Then $A^{m}=\left(P B P^{-1}\right)^{m}=\left(P B P^{-1}\right)\left(P B P^{-1}\right) \cdots\left(P B P^{-1}\right)=P B^{m} P^{-1}$

Thus $e^{A}=\sum_{m=0}^{\infty} \frac{A^{m}}{m!}=\sum_{m=0}^{\infty} \frac{1}{m!} \cdot P B^{m} P^{-1}=P\left(\sum_{n=0}^{\infty} \frac{1}{m} \cdot B^{m}\right) P^{-1}=P\left(e^{B}\right) P^{-1}$.

Piagonalizable matrix $A=P D P^{-1}$, where D is diagonal.
Let

$$
D=\left[\begin{array}{llll}
d_{11} & & & 0 \\
& d_{2_{2}} & & \\
& \ddots & \\
& & & d_{n 1}
\end{array}\right]
$$

Then $\quad D^{m}=\left[\begin{array}{cccc}d_{11}^{m} & & 0 \\ & \ddots & \\ 0 & & & \\ 0 m\end{array}\right]$
So

$$
e^{D}=\sum_{m=0}^{\infty} \frac{D^{m}}{m^{\prime}}=\left[\begin{array}{llll}
\sum_{n=0}^{\infty} \frac{d_{11}^{m}}{m!} & & & \\
& \ddots & & \\
& \ddots & \\
& & \ddots & \sum_{m=0}^{\infty} \frac{d_{m n}^{m}}{m!}
\end{array}\right]=\left[\begin{array}{llll}
e^{d_{11}} & & \\
& \ddots & \\
& & \ddots & \\
& & & e^{d_{n n} n}
\end{array}\right]
$$

$$
\Rightarrow e^{A}=p\left[\begin{array}{ccc}
e^{d_{11}} & & 0 \\
& \ddots & \\
0 & & e^{d_{n n}}
\end{array}\right] p^{-1} \text {, where } \quad A=P P p^{-1} \text {. }
$$

Non-diagonalizable A
Recall Jordan Canonical Form:
Every square matrix $A \in \mathbb{C}^{n \times n}$ can be transformed into

$$
-\left[\begin{array}{ll}
J_{1} & \bigcap
\end{array}\right\rceil
$$

Every square mai"x II e can we <compat>...asy, in.

$$
A=P J P^{-1} \text {, where } P \in \mathbb{C}^{n \times n} \text { and } J=\left[\begin{array}{ccc}
J_{1} & & \\
& \ddots & 0 \\
\vdots & \ddots & \\
0 & & J_{p}
\end{array}\right]\left\{\begin{array}{l}
\text { block } \\
\text { diagon-1 }
\end{array}\right.
$$

Each J_{i} is a Jordan block with λ_{i} on the diagonal, 1 directly above the lijoual, and O everywhere else.

$$
J_{i}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & & & 0 \\
& \lambda_{i} & & & \\
& \ddots & \ddots & 1 \\
0 & & & \lambda_{i}
\end{array}\right]
$$

Then $e^{A}=P e^{J} P^{-1}$ by property 3 above.

$$
\begin{aligned}
& e^{J}=\sum_{m=0}^{\infty} \frac{J^{m}}{m!}=\left[\begin{array}{llll}
\sum_{m=0}^{\infty} \frac{J_{1}^{m}}{n!} & & & \\
& \ddots & \\
& \ddots & \\
& & & \sum_{n=0}^{\infty} \frac{J_{p}^{m}}{m!}
\end{array}\right]=\left[\begin{array}{llll}
e^{m} & & \\
& \ddots & \\
& \ddots & \\
& & \ddots & \\
& & & J_{p}
\end{array}\right] \\
& \exp \left(J_{i}\right)=\exp \left(\left[\begin{array}{ccccc}
\lambda_{i} & 1 & & \\
& \ddots & \ddots & \\
& \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right]\right)=\exp \left(\left[\begin{array}{cccc}
\lambda_{i} & & & 0 \\
& & \ddots & \\
& & \ddots & \\
& & & \\
& & & \lambda_{i}
\end{array}\right]+\left[\begin{array}{ccccc}
0 & 1 & & \\
& \ddots & \ddots & & \\
& & \ddots & & \\
& & \ddots & \ddots & \\
& & & \ddots & \\
& & & & \\
& & & &
\end{array}\right]\right) \\
& =\exp \left(d_{i} I\right) \exp \left(\left[\begin{array}{llll}
0 & 1 & & \\
& \ddots & \ddots & \\
& \ddots & \ddots & \\
& & & 0
\end{array}\right]\right) \quad\left(\begin{array}{llll}
\text { rom. } 2)
\end{array}\right.
\end{aligned}
$$

$\downarrow^{\text {nilpotant }}$
Let's call $N_{q} \in \mathbb{C}^{q \times q}$, the $q \times q$ matrix with P^{\prime} in the row above the diagonal and O 's everywhere else,

Ex. $\quad N_{4}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] \quad N_{4}^{2}=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Than N_{q}^{2} has I's two rows above the diagonal and O's every whore else, Then N_{q}^{k} has 1's K rows above the diagonal and O's everywhere else $\Rightarrow \quad N_{q}^{q}=0$.
Thar, $\quad \exp \left(N_{q}\right)=\sum_{m=0}^{\infty} \frac{N_{q}^{m}}{m!}=\sum_{m=0}^{q-1} \frac{N_{q}^{m}}{m!}=I+N_{q}+\frac{1}{2!} N_{q}^{2}+\frac{1}{3!} N_{q}^{3}+\cdots+\frac{1}{(q-1)!} N_{v}^{q-1}$. $=\left[\begin{array}{cccccc}1 & 1 & \frac{1}{2} & \frac{1}{6} & \cdots & \frac{1}{(q-1)!} \\ 1 & 1 & \frac{1}{2} & \frac{1}{6} & & \vdots \\ & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & \ddots & \frac{1}{6} \\ & & & \ddots & \ddots & \frac{1}{2} \\ & & & \ddots & \ddots & 1 \\ & & & & \ddots & 1\end{array}\right]$

Thus, we can compute
$\exp \left(J_{i}\right)=\exp \left(\lambda_{i} I\right) \exp \left(N_{q_{i}}\right)$, where q_{i} is the size of tho it Jordan block.

And $\exp (A)=P(\exp (J)) P^{-1}$ is computable.
Computing matrix exponential using differential equation:
Recall: Let $\frac{d X}{d t}=A X, \quad A \in \mathbb{R}^{n \times n}, \quad X=X(t) \in \mathbb{R}^{n}$
Then $X(t)=X(0) \exp (A t) \quad \leftarrow$ Picard iteration proof. Could expend $\exp (A t)=\sum_{m=0}^{\infty} A^{m} \frac{t^{m}}{m!}$ to solve $X(t)$.

On the other had, if we knew $X(t)$, can solve for exp $(A t)$ [leonard, 1996]: Let $A \in \mathbb{R}^{n \times n}$ matrix and its characteristic equation
[leonard, 1996 : Let $A \in \mathbb{R}^{n \times n}$ matrix and its characteristic equation SIAM Review $\quad \operatorname{def}(\lambda I-A)=\lambda^{n} f_{a}, \lambda^{n-1}+\cdots+a_{n}=0$.

We can write a higher-order ODE with constant coefficient

$$
\frac{d^{n}}{d t^{n}} x(t)+a_{i} \frac{d^{n-1}}{d t^{n-1}} x(t)+\cdots+a_{n-1} \frac{d}{d t} x(t)+a_{n} x(t)=0
$$

Then, we cm find n linearly ind. solutions $x_{1}(t), \cdots, x_{n}(t)$ with initial conditions

$$
x_{n}(0)=0
$$

$$
\frac{d}{d t} x_{n}(0)=0
$$

$$
\begin{aligned}
& \frac{d^{n-2}}{d t^{n-2}} x_{n}(0)=0 \\
& \frac{d^{n-1}}{d t^{n-1}} x_{n}(0)=1
\end{aligned}
$$

Then $e^{A t}=x_{1}(t) I+x_{2}(t) A+\cdots+x_{n}(t) A^{n-1}$.

Exercise for viewer: Verify that the alternate defmition

$$
e^{A}=\lim _{m \rightarrow \infty}\left(I+\frac{1}{m} A\right)^{m} \quad \text { also works. }
$$

